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From scaling to multiscaling in the stochastic Burgers equation
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We investigate the scaling behavior of the structure functigg&;)=([u(r)—u(0)]%x|r|*9, in the sto-
chastic Burgers equation as a function of the expoigeifiat characterizes the scale of noise correlations, for
0<B<—1. We analyze the exact equations satisfiedsffy) (q=3,4,5) based on certaansaze For small
negative Kolmogorov-like scaling with¢,= —q/8/3 is obtained; ag— — 1 an increasing multifractal struc-
ture occurs with bifractality foB<—1. We determine, and {5, which are piecewise continuous and the
associated multifractal scaling exponeri§81063-651X97)13010-0

PACS numbsdis): 47.10+g, 05.45:+b, 64.60.Fr

One aspect of fully developed turbulence that has beedescribe. We use numerical simulations based on a pseu-
studied extensively, theoretically, and experimentally is thedospectral codésee Ref[4] and[8]) to provide plausible
occurrence of multifractality1]; the focus has been on the evidence for some of our analytic work. We demonstrate that
velocity structure functions, Sy(r)=([u(x+r/2t)—u(x  for B<—1 the behavior is actually that of a system with
—r1/2{)]%. Forr in the inertial range and for large Reynolds cutoff noise, i.e.{,=1 for g>2, analogous to an extreme
numbersias»v— 0), the behavior of the structure functions is form of multifractality dubbed bifractality1,9]. The follow-
given by ing scenario emerges for 1<3<0 that connects simple

Sy(r)~|r|4 (1) scaling behavior on the one hand and bifractality on the
a ' other. For small negativgg S;(r) exhibits (Kolmogorov-
where we have restricted our attention to one dimension folike) scaling with {,=—q/3 until at someg it deviates
simplicity. The deviation from linearity of,, i.e., {4#cq, from this; the deviation occurs closer B=0, the larger the
signals multifractal behavior. value ofg. Conversely, at any the naive scaling exponent

It is useful to have simple models in which one can studyis exhibited byS, for small values ofy; the deviation occurs
various theoretical issues associated with scaling and multfor larger and larger values a@f the closers is to 0. Even-
fractality, such as the influence of infraréglystem sizeand  tually, for < —3/2, the system exhibits bifractality. In ad-
ultraviolet (viscous dissipation scaleutoffs on scaling be-  gition, we show that the inner cutoff scale of the inertial
havior. The stochastic Burgers equation in one dimension, gange depends on the order of the structure function consid-
recent focus of attentioj2—6] provides an interesting arena ered and deduce possible forms of the associated multifractal
to study some of these theoretical issues; it is given by scaling exponentfl0].

This rich multiscaling behavior is partly due to the occur-
rence of shocks and partly due to the flux of eneddyK),
not being independent of the scale, i.e., energy is supplied at
all scales. Recall thdtl (k) is defined as the contribution of
the nonlinear term to-(1/2L.%) 3,2 < (U(k) U(—K)). Us-
ing the fact that in the inertial range viscous dissipation is

(k0 (K’ ,t’))=2f)(k) S o S(t—t"). 3) qegligible and the .ﬂux.is provided by tr:(e stochastic noise we
find that the flux is given byI(K)«xX3, D(k). From the

In this paper we will study the case in which the noiseform of the stochastic noise it is easy to see that for®
varianceD (k) exhibits power-law behavioD (k)=Dy|k|?  >—1, II(K)x(Dy/L)K**# whereL is the system size. In
with 8<0; this model has been investigated both f@r this respect this system differs from fully developed, three-
=—1[3], and for 2= 8=—1 [4]. When 8 is positive, the dimensional turbulence, whef&(K) is constant in the iner-
model has been studied in the interface representation Wjal range. However, foB<—1 the energy flux is a constant
Medina et al. [7]. Here shocks are not important and the proportional toL"*~# since the above expression for the
structure factors approach constant values at large distancliex is dominated by the infrared cutoff; energy is being
consistent with Gaussian behavior. Simple scaling behaviopumped into the system at large scales and dissipated in
is obtained. However, whef is negative the profiles of the shocks. AtB= —1, the flux is a constant to logarithmic ac-
velocity field in the statistically stationary state show well- curacy.

aul at+uaul ax=vV2u+ g(x,t), 2)

whereu(x,t) is the velocity field,v the viscosity, andy(x,t)
is a Gaussian noise, with zero mean, and correlatiorts in
space determined by

defined shocks in contrast >0. We have found numeri- We begin with a discussion of the behavior 8§(r),
cally that for > 3= —1 the exponentg, depend ong and  which is directly related taE(k) =(u(k)a(—Kk)). If E(k)
are not linear ing [4]. «|k|~7 then{,= o — 1. The numerical evidence leads to the

We summarize the main results of this paper. Our resultfollowing picture forE(k) for —1<p<0: At small length
are based on the exact equations satisfiedSily) for g scales we obtain free-field behavior with=8—2, which
=3,4,5 that we analyze based on assumptions that we wiltrosses over to inertial-range behavior, at a length scale de-
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FIG. 2. loggSs(r)| vs logr. The straight line, drawn for

FIG. 1. IOtgLo E(;() v_s l_og“ég w_hgrgg(k) Tj|<3u—(k1)l(1)£<_1l(;z>6ls-gae comparison, has a slope equal to the predicted valGe5. Here
energy spectrum fop=—0.80, »=0.06, andb =1. - "€ s 0.5 1=0.075 and=1.0x10"".

upper straight line, drawn for comparison, has a slope given by
—1+2p/3, which is equal to-1.53 for the value of3 considered.
The lower line corresponds to free-field behavior with an exponen
of —2+ B. The wave vectok is in units of the basic interval ik
space, namely, 2/L, where the system size is given hy=1024.

{n the limit »— 0 the first term is negligible compared to the
erm involving the noisep(x,t). A straightforward analysis
yields for 0>8>—1

, Sa(r)ecsgrir)|r| 7. (6)
noted byl., namely, toc=1-2p/3; the latter exponent is
the one obtained by naive extrapolation of the fixed-pointin Fig. 2 we display numerical results fg= —0.5 that are
behavior obtained for positivg in Ref.[7]. nicely consistent with the theoretical results given above. For
We can give a heuristic explanation of this behavior basegg< — 1, imposing an explicit cutoff on the noise spectrum at
on two ingredients(i) Free-field behavior occurs up to a L., we find
length scald; at which the appropriate nonlinear coupling
becomes of order unity under the renormalization group r
transformation; to leading order around the free-field fixed Sy(r)=Cy |__CJrC2
point one finds thak, is given byv=I27#3_(ii) In the iner-
tial range, the input energy “cascades” to smaller scales anavhich forr <L is dominated by the linear term. This means
we can define a dissipation wave numb&r at which the that the results are similar to those of the cutoff theory. Con-
dissipation, defined by ﬂfgcdk K(0(k)i(—K)), becomes sequently, one can argue fOIIOWing RES] that higher-orde_r_
comparable to the energy flux. Substituting the scaling fornptructure functions also behave linearly. We have verified
(G(K)G(— k) )< |k|~ yields the result that the dissipatiéup this numerically[11]. For ,[_3> —1 the subdominant te_rm in
to K,) is proportional tOVKg_U; since this is comparable to _Eq. (7) becomes the dominant one. Thus the beha\{lcﬁ§3of
the energy flux that is given bi¢*#, we conclude thaw ggﬁgi/?(lﬁt?;;itwien constant behaviorgat0, and linear
o—_2+ . «po . . - .
_ocKc_ B The reas_onable_|dent|f|cat|0n of this edge_of the The rest of our analysis is based on the equations for
inertial range K., with the inverse of .~0O(6), at which

. C . S,(r) and S5(r). The general result was presented in Ref.
free-field behavior begins, leads do=1-24/3. 5]. For a statistically stationary, homogeneous state the
We thus havé5] for negativeg, (5] Istically ! Y 9 .

equations, using the notation that will be employed in the
rest of the paperx;=x+r/2, X,=x—r/2, u;=u(Xy), U,
Sy(r)~|r| 285, (4 =u(xp), andg;=dldx; for i=1,2 are

r -B
o "

1dS,(r) 2vd?s;

Note that this behavior is obtained foy<r <L, where the 6 dr ~ 3 ar 2([e1+ e][ui—uz]) (8
outer scale is denoted Hy, and the inner scalk, is of the
order of the shock thickness We note that this behavior is 5ng
most easily seen numerically by studyilgk)e|k|~7; in
Fig. 1 we show our results fg8= —0.80 that are consistent 1 dSs(r) 1 R 5
with o=1-—2p/3 at long wavelengths and free-field behav- 0 ar 22 ; D(k)cogkr){(u;—u,)%)
ior at short distances. We have also found that the long-
wavelength behavior db, for which theoretical justification 1 )
was offered above persists down fie= — 1.50. — 3 Kt el(ui—uy)%)

We discuss nex®;(r), which obeys the analog of the von
Karman—Howarth relation given by —([e1+ €] (U1—Uy)?)], 9

5 where e€;=v(d,u;)? and e,=v(d,U,)%. These and analo-
1dS(r) _ , d°Sy(r) 1 S D(k)cosr (5)  gous results foss, for g>5 show that their behavior is de-
6 dr drz L2% ' termined by the form of the operator product expansion
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(OPE for (the subtracted part pf(e;+ €,) (u;—u,) 97 3). If wa ' T T ]
we assume thate;(u;—uy)™) —(€){(u;—uy)™) behaves
as |r|~#m then the equations allow the identificati¢h2]

Hm={m+3— 1. '

We will now argue, by examining Eq$8) and (9), that 5 08F
for negativeg close to zero and fog not too large,Sy(r) 0.6
displays power-law behavior in the inertial range with sk
Sy(r)~|r| =", (10 0z

0 1 ]

This behavior is subdominant f@>0, where allS, behave -2 L5 -1

as constants at large enough distance.$orthis relation is : g

valid for all —1<B<0 as shovyn above. Far>3 Eq.(10) FIG. 3. Exponents,, ¢s, £, andZs vs B, for —2<B<0. The

cgnnot be true for all3<0, since{,—1 asp— - 1'_ In lowest curve is that of, and the ones above it are in the ordgr

higher-order structure factors one source of the scaling term, " anqz. . All the exponents stick at 1 fg8 sufficiently negative.

is the term Sq_g(rzsz(k)COS((r) in the equation for As explained in the text, the exponents follow from our theoretical

dS,(r)/dr. Since %D (k)coskr)x|r|"#7%, scaling behavior analysis of the equations for the structure functions.

for Sy_3 yields scaling forS, [13]. More generally a naive

scaling argument with the scaling dimensiorhef —g/3for 5~ _2/3 Note thatz, extrapolates to 1 a8=—1 as ex-

uand—1+3h for eleads to the result in Eq10). Note that  pacted. The variation of, with 8 is shown in Fig. 3.

there is a single multifractal exponeint= — B/3. ~ Note that Eq.(12) implies that the dissipation scale de-
We discuss below how these exponents change to multhends on the order of the structure function being consid-

fractal exponents g8is varied. In the absence of a complete ered, a phenomenon characteristic of multifractality. Follow-

gnflersFandiPhg of the ?ierarc{?y (t)f operators fin’;gﬁ theoliy thghg conventional multifractal analys[d] we can define an

etermines the operator product expansion fopBalle make __ sl+hy ;

certain assumptions to determine explicit expressiong for ixg ?ffnﬁt)h/‘é ?Zr V_ 15<4 p< fngraﬂcﬁqgéln?e\g; zrrsigfhly

and 5 consistent with our expectations in the limits When,[0 the scaling exponent 01‘—,8)3 at = —2/3. We have

B=0 andB=—1. These correspond to specific choices forchecked this behavior #i= — 0.8 andg= — 0.4 énd the data

the fusion rules for th€singula) operators that enter the L . .
Egs.(8) and (9). for the former are shown in Fig(d). The theoretical predic-

We deduce the behavior ¢fe;+ €,)(u;—u,)) that en-

ters Eq.(8) as follows: note that for fixea it is proportional 0.4
to 02
0 =
. ~ ~ ~ -0.2
| ok daqk+ @sinknacoicac—k-a). = ol
%9,; 0.6
For the three-point function ink space, S3(K;,K5,K3) - sk
=(U(k,)U(ky)U(ks)), we conjecture a form that is consis- a1k
tent with the known behavior d&; and use this to perform a2k
the k integrals with an explicit ultraviolet cutoff denoted by 14
S,4; we will assume that this dominates the scaling behavior 0.5
of S,. We conjecture the following symmetric form for the
three-point function 04
Sa(ky Kz ka)~ [kq|#1|ky|#2|ks| “3+ (permutations o
11 ‘
07
With uq+ u,+ uz=B—2 one recovers the behavior 8f, g 08
namely,S;~|r|~# for —1<3<0. Using this expression for & 09
the three-point function in Eq8) for S,, a consistent solu- -1
tion is obtained whem = pu,= puz=(B—2)/3; we find that -1l
this term contribute$,~ v|r|Y3+(1=A3) 53 +2(1+AB | the 12
limit »—0, one must havé,—0 such that ok > . Y )
y~ sLH2A+BIE (12) logio7

) o ] FIG. 4. (8) 10g10S4(r) vs logyr, for =—0.80,»=0.075, and
This analysis yieldg,= (2— B)/3, where(, is the exponent  p—1 0x107. The straight line, drawn for comparison, has a slope
of r in the above expression @&,; since we seek scaling equal to 0.91, while the predicted value is 0.9328.10g,,S,(r) Vs
behavior forr <L whereL is the outer cutoff this behavior |og,, for 8=—0.30, »=0.06, andD=2.0x10"%. The straight
dominates over scaling with the exponend3/3 for —1 line, drawn for comparison, has a slope equa-tés/3.
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tion yields a value of 0.933 and our numerical results yield—1/2<g<0 for q=5. Conversely, ag— 0, {;= —q/3 for
0.90+0.04. It becomes numerically difficult to extract the higher and higher values of For smaller values g8, there
exponents reliably for-0.3<8<0 because the crossover is multiscaling, which is different for different segmentsf
length scales become large. The result f&=—0.30 is values. When one considers higher-order structure factors,
shown in Fig. 4b). Our numerical simulations were done on we expect an increase in the number of segments of multi-
a system of size.=1024 with N=4096 k modes in the scaling, and the range @ where simple scaling holds de-
spectral code. Some checks were made by halving the sysfeases, its extremal point moving ever closer to 0. While the
tem size and doubling the number of modes. In addition, wespecific details depend on our analysis we can sum up our
have varied the value afby a factor of 3 and found that our result as follows: at any between 0 and- 1, there is mul-
results remain the same in the inertial range. Given that wéiscaling, with a finite number of low-order structure factors
do not use hyperviscosity it is difficult to redusemuch  obeying simple scaling, with that number increasing as
further without a great deal more computer time. It is impor-8—0.
tant to emphasize that our numerical results are accompanied We comment next on the standard scale-dependent di-
by different consistency checks and are in quantitative acmensionD(h). Assuming that the exponents, we have
cord with our theoretical analysis. determined from the/— 0 behavior are the ones that mini-
Our analysis ofS5(r) is more involved although similar mize the usual expression relatigg to D(h,), namely[1],
in spirit. We again assume that the behavior (¢fe;
+ €,][u;—U,]?) in the »—0 limit is dominated by the four Lq=ming[ghy+1—D(hy)]. (13
point function (U(k,)U(k,)U(k3)U(K,)). The behavior de-
duped aboye fog, is. used to conjecture forms for'the four- 5ne finds thab =1 for all g when simple scaling is ob-
point function allowing one to perform the analysis. For ex-
ample, the symmetric version of the analog of EHL) with
the correspondingu;= po=puz=puys=—1+(1+ B)/12 that

tained; this is consistent with the absence of shocklike struc-
ture at3=0. As 8 moves from 0 to—1, the fractal dimen-
-’ ) 4 sion relevant to each structure factor decreases in a piecewise
reproducesS,(r) ~|r| is used in the regime-1<8  oniinuous way fronD =1 to D=0, a sign of the increasing
<—2/3. This yields(s=1—(1+ )/12. There are now three e of shocks. For instance, as can be deduced from the
different regions, one extending froff=0 to B=—-1/2 |5 es ofz, andh, one hasD(4)=3(1+g) for —1<B<
where scaling behavior is obtained and another fd/3 —2/3, and similarlyD(5)=1+ 8 for — 1< 8< — 2/3. When
$[3§—1/2. Th(=T behavior of5 is shown in Fig. 3. The B=—1, both D(4) andD(5) are equal to zero. FoB<
multifractal scaling exponertis assumes the valudg=h  _ 3/5 the pehavior is dominated by shocks; since for pure

=—pI3 for 0>B>—1/2, hy=1/2+2B/3 for —1/2> B> shocks one ha& =0, corresponding to pointlike behavior
—2/3, and (& p)/6 for —2/3>p>—1. Note that botlls 54,5 5 we find {q=1 forg=2.
andhs are piecewise linear and continuous. Our investigations show that the Burgers equation is a

We conjecture the following scenario on the basis of the,ery interesting laboratory for the study of certain theoretical
calculations outlined above. Simple scaling with,= issues related to turbulence.

—qB/3 andh= — B/3 occurs over a progressively diminish-
ing range of values o8 as higher values af are considered: We are grateful to the Ohio Supercomputer Center for
the range is- 1< 8<0 forq=3, —2/3< <0 forq=4,and  continuing support.
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