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From scaling to multiscaling in the stochastic Burgers equation

F. Hayot and C. Jayaprakash
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~Received 23 May 1997!

We investigate the scaling behavior of the structure functions,Sq(r )5^@u(r )2u(0)#q&}ur uzq, in the sto-
chastic Burgers equation as a function of the exponentb that characterizes the scale of noise correlations, for
0,b,21. We analyze the exact equations satisfied bySq(r ) (q53,4,5) based on certainansätze. For small
negativeb Kolmogorov-like scaling withzq52qb/3 is obtained; asb→21 an increasing multifractal struc-
ture occurs with bifractality forb,21. We determinez4 and z5 , which are piecewise continuous and the
associated multifractal scaling exponents.@S1063-651X~97!13010-0#

PACS number~s!: 47.10.1g, 05.45.1b, 64.60.Fr
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One aspect of fully developed turbulence that has b
studied extensively, theoretically, and experimentally is
occurrence of multifractality@1#; the focus has been on th
velocity structure functions,Sq(r )[^@u(x1r /2,t)2u(x
2r /2,t)#q&. For r in the inertial range and for large Reynold
numbers~asn→0!, the behavior of the structure functions
given by

Sq~r !;ur uzq, ~1!

where we have restricted our attention to one dimension
simplicity. The deviation from linearity ofzq , i.e., zqÞcq,
signals multifractal behavior.

It is useful to have simple models in which one can stu
various theoretical issues associated with scaling and m
fractality, such as the influence of infrared~system size! and
ultraviolet ~viscous dissipation scale! cutoffs on scaling be-
havior. The stochastic Burgers equation in one dimensio
recent focus of attention@2–6# provides an interesting aren
to study some of these theoretical issues; it is given by

]u/]t1u]u/]x5n¹2u1h~x,t !, ~2!

whereu(x,t) is the velocity field,n the viscosity, andh(x,t)
is a Gaussian noise, with zero mean, and correlationsk
space determined by

^ĥ~k,t !ĥ~k8,t8!&52D̂~k!dk,2k8d~ t2t8!. ~3!

In this paper we will study the case in which the noi
varianceD̂(k) exhibits power-law behavior,D̂(k)5D0ukub
with b,0; this model has been investigated both forb
521 @3#, and for 2>b>21 @4#. Whenb is positive, the
model has been studied in the interface representation
Medina et al. @7#. Here shocks are not important and t
structure factors approach constant values at large dista
consistent with Gaussian behavior. Simple scaling beha
is obtained. However, whenb is negative the profiles of the
velocity field in the statistically stationary state show we
defined shocks in contrast tob.0. We have found numeri
cally that for 0.b>21 the exponentszq depend onb and
are not linear inq @4#.

We summarize the main results of this paper. Our res
are based on the exact equations satisfied bySq(r ) for q
53,4,5 that we analyze based on assumptions that we
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describe. We use numerical simulations based on a p
dospectral code~see Ref.@4# and @8#! to provide plausible
evidence for some of our analytic work. We demonstrate t
for b,21 the behavior is actually that of a system wi
cutoff noise, i.e.,zq51 for q.2, analogous to an extrem
form of multifractality dubbed bifractality@1,9#. The follow-
ing scenario emerges for21,b,0 that connects simple
scaling behavior on the one hand and bifractality on
other. For small negativeb Sq(r ) exhibits ~Kolmogorov-
like! scaling with zq52qb/3 until at someb it deviates
from this; the deviation occurs closer tob50, the larger the
value ofq. Conversely, at anyb the naive scaling exponen
is exhibited bySq for small values ofq; the deviation occurs
for larger and larger values ofq the closerb is to 0. Even-
tually, for b<23/2, the system exhibits bifractality. In ad
dition, we show that the inner cutoff scale of the inert
range depends on the order of the structure function con
ered and deduce possible forms of the associated multifra
scaling exponents@10#.

This rich multiscaling behavior is partly due to the occu
rence of shocks and partly due to the flux of energy,P(K),
not being independent of the scale, i.e., energy is supplie
all scales. Recall thatP(k) is defined as the contribution o
the nonlinear term to2(1/2L2)] t( uku,K^û(k)û(2k)&. Us-
ing the fact that in the inertial range viscous dissipation
negligible and the flux is provided by the stochastic noise
find that the flux is given byP(K)}(1/L

K D̂(k). From the
form of the stochastic noise it is easy to see that for 0.b
.21, P(K)}(D0 /L)K11b whereL is the system size. In
this respect this system differs from fully developed, thre
dimensional turbulence, whereP(K) is constant in the iner-
tial range. However, forb,21 the energy flux is a constan
proportional toL212b since the above expression for th
flux is dominated by the infrared cutoff; energy is bein
pumped into the system at large scales and dissipate
shocks. Atb521, the flux is a constant to logarithmic ac
curacy.

We begin with a discussion of the behavior ofS2(r ),
which is directly related toE(k)5^û(k)û(2k)&. If E(k)
}uku2s thenz25s21. The numerical evidence leads to th
following picture for E(k) for 21,b,0: At small length
scales we obtain free-field behavior withs5b22, which
crosses over to inertial-range behavior, at a length scale
4259 © 1997 The American Physical Society
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4260 56F. HAYOT AND C. JAYAPRAKASH
noted byl c , namely, tos5122b/3; the latter exponent is
the one obtained by naive extrapolation of the fixed-po
behavior obtained for positiveb in Ref. @7#.

We can give a heuristic explanation of this behavior ba
on two ingredients:~i! Free-field behavior occurs up to
length scalel c at which the appropriate nonlinear couplin
becomes of order unity under the renormalization gro
transformation; to leading order around the free-field fix
point one finds thatl c is given byn} l c

12b/3 . ~ii ! In the iner-
tial range, the input energy ‘‘cascades’’ to smaller scales
we can define a dissipation wave numberKc at which the
dissipation, defined by 2n*0

Kcdk k2^û(k)û(2k)&, becomes
comparable to the energy flux. Substituting the scaling fo
^û(k)û(2k)&}uku2s yields the result that the dissipation~up
to Kc! is proportional tonKc

32s ; since this is comparable t
the energy flux that is given byKc

11b , we conclude thatn
}Kc

s221b . The reasonable identification of this edge of t
inertial range,Kc , with the inverse ofl c'O(d), at which
free-field behavior begins, leads tos5122b/3.

We thus have@5# for negativeb,

S2~r !;ur u22b/3. ~4!

Note that this behavior is obtained forl c,r ,Lc where the
outer scale is denoted byLc and the inner scalel c is of the
order of the shock thicknessd. We note that this behavior i
most easily seen numerically by studyingE(k)}uku2s; in
Fig. 1 we show our results forb520.80 that are consisten
with s5122b/3 at long wavelengths and free-field beha
ior at short distances. We have also found that the lo
wavelength behavior ofS2 for which theoretical justification
was offered above persists down tob521.50.

We discuss nextS3(r ), which obeys the analog of the vo
Karman–Howarth relation given by

1

6

dS3~r !

dr
5n

d2S2~r !

dr2 2
1

L2 (
k

D̂~k!coskr. ~5!

FIG. 1. log10 E(k) vs log10 k, whereE(k)5^û(k)û(2k)& is the
energy spectrum forb520.80,n50.06, andD51.031026. The
upper straight line, drawn for comparison, has a slope given
2112b/3, which is equal to21.53 for the value ofb considered.
The lower line corresponds to free-field behavior with an expon
of 221b. The wave vectork is in units of the basic interval ink
space, namely, 2p/L, where the system size is given byL51024.
t

d

p
d

d

-

In the limit n→0 the first term is negligible compared to th
term involving the noiseh(x,t). A straightforward analysis
yields for 0.b.21

S3~r !}sgn~r !ur u2b. ~6!

In Fig. 2 we display numerical results forb520.5 that are
nicely consistent with the theoretical results given above.
b,21, imposing an explicit cutoff on the noise spectrum
Lc , we find

S3~r !5C1

r

Lc
1C2S r

Lc
D 2b

, ~7!

which for r ,Lc is dominated by the linear term. This mea
that the results are similar to those of the cutoff theory. C
sequently, one can argue following Ref.@5# that higher-order
structure functions also behave linearly. We have verifi
this numerically@11#. For b.21 the subdominant term in
Eq. ~7! becomes the dominant one. Thus the behavior ofS3
interpolates between constant behavior atb50, and linear
behavior forb,21.

The rest of our analysis is based on the equations
S4(r ) and S5(r ). The general result was presented in R
@5#. For a statistically stationary, homogeneous state
equations, using the notation that will be employed in t
rest of the paper,x15x1r /2, x25x2r /2, u15u(x1), u2
5u(x2), and] i5]/]xi for i 51,2 are

1

6

dS4~r !

dr
5

2n

3

d2S3

dr2 22^@e11e2#@u12u2#& ~8!

and

1

40

dS5~r !

dr
52

1

2L2 (
k

D̂~k!cos~kr !^~u12u2!2&

2
1

3
@^@e11e2#~u12u2!2&

2^@e11e2#&^~u12u2!2&#, ~9!

where e15n(]1u1)2 and e25n(]2u2)2. These and analo
gous results forSq for q.5 show that their behavior is de
termined by the form of the operator product expans

y

t

FIG. 2. log10uS3(r )u vs log10 r . The straight line, drawn for
comparison, has a slope equal to the predicted value20.5. Here
b520.5, n50.075, andD51.031027.
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56 4261FROM SCALING TO MULTISCALING IN THE . . .
~OPE! for ~the subtracted part of! ^(e11e2)(u12u2)q23&. If
we assume that̂e1(u12u2)m&2^e1&^(u12u2)m& behaves
as ur u2mm then the equations allow the identification@12#
mm5zm1321.

We will now argue, by examining Eqs.~8! and ~9!, that
for negativeb close to zero and forq not too large,Sq(r )
displays power-law behavior in the inertial range with

Sq~r !;ur u2qb/3. ~10!

This behavior is subdominant forb.0, where allSq behave
as constants at large enough distance. ForS3 , this relation is
valid for all 21,b,0 as shown above. Forq.3 Eq. ~10!
cannot be true for allb,0, since zn→1 as b→21. In
higher-order structure factors one source of the scaling t
is the term Sq23(r )SkD̂(k)cos(kr) in the equation for
dSq(r )/dr. Since SD̂(k)cos(kr)}uru2b21, scaling behavior
for Sq23 yields scaling forSq @13#. More generally a naive
scaling argument with the scaling dimension ofh52b/3 for
u and2113h for e leads to the result in Eq.~10!. Note that
there is a single multifractal exponenth52b/3.

We discuss below how these exponents change to m
fractal exponents asb is varied. In the absence of a comple
understanding of the hierarchy of operators in the theory
determines the operator product expansion for allb we make
certain assumptions to determine explicit expressions foz4
and z5 consistent with our expectations in the limits wh
b50 andb521. These correspond to specific choices
the fusion rules for the~singular! operators that enter th
Eqs.~8! and ~9!.

We deduce the behavior of^(e11e2)(u12u2)& that en-
ters Eq.~8! as follows: note that for fixedn it is proportional
to

E dkE dqq~k1q!sin~kr !^û~k!û~q!û~2k2q!&.

For the three-point function ink space, ŝ3(k1 ,k2 ,k3)
5^û(k1)û(k2)û(k3)&, we conjecture a form that is consis
tent with the known behavior ofS3 and use this to perform
the k integrals with an explicit ultraviolet cutoff denoted b
d4 ; we will assume that this dominates the scaling behav
of S4 . We conjecture the following symmetric form for th
three-point function

ŝ3~k1 ,k2 ,k3!;uk1um1uk2um2uk3um31~permutations!.
~11!

With m11m21m35b22 one recovers the behavior ofS3 ,
namely,S3;ur u2b for 21,b,0. Using this expression fo
the three-point function in Eq.~8! for S4 , a consistent solu-
tion is obtained whenm15m25m35(b22)/3; we find that
this term contributesS4;nur u1/31(12b)/3/d4

112(11b)/3 . In the
limit n→0, one must haved4→0 such that

n;d4
112~11b!/3 . ~12!

This analysis yieldsz45(22b)/3, wherez4 is the exponent
of r in the above expression ofS4 ; since we seek scaling
behavior forr ,Lc whereLc is the outer cutoff this behavio
dominates over scaling with the exponent24b/3 for 21
m

ti-

at

r

r

,b,22/3. Note thatz4 extrapolates to 1 atb521 as ex-
pected. The variation ofz4 with b is shown in Fig. 3.

Note that Eq.~12! implies that the dissipation scale de
pends on the order of the structure function being cons
ered, a phenomenon characteristic of multifractality. Follo
ing conventional multifractal analysis@1# we can define an
exponenth4 by n;d4

11h4 and from Eq.~12! we find h4

52(11b)/3 for 21,b,22/3, which connects smoothly
to the scaling exponent of2b/3 at b522/3. We have
checked this behavior atb520.8 andb520.4 and the data
for the former are shown in Fig. 4~a!. The theoretical predic-

FIG. 3. Exponentsz2 , z3 , z4 andz5 vs b, for 22,b,0. The
lowest curve is that ofz2 and the ones above it are in the orderz3 ,
z4 , andz5 . All the exponents stick at 1 forb sufficiently negative.
As explained in the text, the exponents follow from our theoreti
analysis of the equations for the structure functions.

FIG. 4. ~a! log10S4(r ) vs log10r , for b520.80,n50.075, and
D51.031026. The straight line, drawn for comparison, has a slo
equal to 0.91, while the predicted value is 0.9333.~b! log10S4(r ) vs
log10r , for b520.30, n50.06, andD52.031026. The straight
line, drawn for comparison, has a slope equal to24b/3.
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4262 56F. HAYOT AND C. JAYAPRAKASH
tion yields a value of 0.933 and our numerical results yi
0.9060.04. It becomes numerically difficult to extract th
exponents reliably for20.3,b,0 because the crossove
length scales become large. The result forb520.30 is
shown in Fig. 4~b!. Our numerical simulations were done o
a system of sizeL51024 with N54096 k modes in the
spectral code. Some checks were made by halving the
tem size and doubling the number of modes. In addition,
have varied the value ofn by a factor of 3 and found that ou
results remain the same in the inertial range. Given that
do not use hyperviscosity it is difficult to reducen much
further without a great deal more computer time. It is imp
tant to emphasize that our numerical results are accompa
by different consistency checks and are in quantitative
cord with our theoretical analysis.

Our analysis ofS5(r ) is more involved although simila
in spirit. We again assume that the behavior of^@(e1
1e2#@u12u2#2& in the n→0 limit is dominated by the four
point function ^û(k1)û(k2)û(k3)û(k4)&. The behavior de-
duced above forS4 is used to conjecture forms for the fou
point function allowing one to perform the analysis. For e
ample, the symmetric version of the analog of Eq.~11! with
the correspondingm15m25m35m45211(11b)/12 that
reproducesS4(r );ur u(22b)/3 is used in the regime21,b
,22/3. This yieldsz5512(11b)/12. There are now three
different regions, one extending fromb50 to b521/2
where scaling behavior is obtained and another for22/3
<b<21/2. The behavior ofz5 is shown in Fig. 3. The
multifractal scaling exponenth5 assumes the valuesh55h
52b/3 for 0.b.21/2, h551/212b/3 for 21/2.b.
22/3, and (11b)/6 for 22/3.b.21. Note that bothz5
andh5 are piecewise linear and continuous.

We conjecture the following scenario on the basis of
calculations outlined above. Simple scaling withzq5
2qb/3 andh52b/3 occurs over a progressively diminish
ing range of values ofb as higher values ofq are considered
the range is21,b,0 for q53, 22/3,b,0 for q54, and
. A

a

ys
d

s-
e

e

-
ied
c-

-

e

21/2,b,0 for q55. Conversely, asb→0, zq52qb/3 for
higher and higher values ofq. For smaller values ofb, there
is multiscaling, which is different for different segments ofb
values. When one considers higher-order structure fact
we expect an increase in the number of segments of m
scaling, and the range ofb where simple scaling holds de
creases, its extremal point moving ever closer to 0. While
specific details depend on our analysis we can sum up
result as follows: at anyb between 0 and21, there is mul-
tiscaling, with a finite number of low-order structure facto
obeying simple scaling, with that number increasing
b→0.

We comment next on the standard scale-dependent
mensionD(h). Assuming that the exponentshn we have
determined from then→0 behavior are the ones that min
mize the usual expression relatingzn to D(hn), namely@1#,

zq5minq@qhq112D~hq!#. ~13!

One finds thatD51 for all q when simple scaling is ob
tained; this is consistent with the absence of shocklike str
ture atb50. As b moves from 0 to21, the fractal dimen-
sion relevant to each structure factor decreases in a piece
continuous way fromD51 to D50, a sign of the increasing
role of shocks. For instance, as can be deduced from
values ofz4 andh4 one hasD(4)53(11b) for 21,b,
22/3, and similarly,D(5)511b for 21,b,22/3. When
b521, both D(4) and D(5) are equal to zero. Forb,
23/2 the behavior is dominated by shocks; since for p
shocks one hash50, corresponding to pointlike behavio
andn}d we find zq51 for q>2.

Our investigations show that the Burgers equation is
very interesting laboratory for the study of certain theoreti
issues related to turbulence.

We are grateful to the Ohio Supercomputer Center
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